Short pulse laser interaction with micro-structured targets: simulations of laser absorption and ion acceleration
نویسندگان
چکیده
The interaction of an ultrashort intense laser pulse with thin foil targets is accompanied by the acceleration of ions from the target surface. To make this ion source suitable for application, it is of particular importance to increase the efficiency of laser energy transformation into accelerated ions and the maximum ion energy. This can be achieved by using a thin foil target with a microscopic structure on the front, laser-irradiated surface. The influence of the microscopic structure on the target surface on the laser target interaction and subsequent ion acceleration is studied here using numerical simulations. The influence of the shape and size of the microstructure, the density profile and the laser pulse incidence angle is also studied. Based on the simulation results, we propose to construct the target for ion acceleration experiments by depositing a monolayer of polystyrene microspheres of a size similar to the laser wavelength on the front surface of a thin foil. 4 Author to whom any correspondence should be addressed. New Journal of Physics 13 (2011) 053028 1367-2630/11/053028+17$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Title of Document : INTERACTION OF LASERS WITH ATOMIC CLUSTERS AND STRUCTURED PLASMAS
Title of Document: INTERACTION OF LASERS WITH ATOMIC CLUSTERS AND STRUCTURED PLASMAS John Patrick Palastro, Ph. D, 2007 Directed By: Professor Thomas M. Antonsen Jr., Physics We examine the interaction of intense, short laser pulses with atomic clusters and structured plasmas, namely preformed plasma channels. In examining the laser pulse interaction with atomic clusters we focus on the optical...
متن کاملاثر کانال یونی بر خودکانونی شدن پالس لیزری گاؤسی در پلاسماهای کم چگال
We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. T...
متن کاملMicro-channels over the glass surface made by interaction of Ar+ laser beam and Ag+/Na+ ion-exchanged glasses
Micro-channels are made over the Ag+/Na+ ion-exchanged soda-lime glass surface by interaction of an intense Ar+ laser beam and the silver ions inside the glass matrix. The Ar+ laser beam reduces the Ag+ ions inside the matrix. The Ag+ atoms aggregate into silver nano-clusters around the interaction area, inside the glass matrix. Aggregation of the silver atoms and the thermal effects of the int...
متن کاملPARTICLE ACCELERATION IN PLASMA High-Energy Ion Generation by Short Laser Pulses1
This paper reviews the many recent advances at the Center for Ultrafast Optical Science (CUOS) at the University of Michigan in multi-MeV ion beam generation from the interaction of short laser pulses focused onto thin foil targets at intensities ranging from 1017 to 1019 W/cm2. Ion beam characteristics were studied by changing the laser intensity, laser wavelength, target material, and by depo...
متن کاملشبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011